library(tidyverse)
df<- readRDS("./jags models/sim age/save/sim_diff_easy.RData")
# adapt i0 numbers. Generated i0 over 10 days, which equals i0/10 per day
df <- df |>
mutate(i0 = i0/10) |>
rename(qlow = "2.5%",
qhigh = "97.5%")
# regressions ------------------------------------------------------------
df |> mutate(out = qhigh<0 | qlow>0,
out = abs(true.beta-mean)) |>
select(true.beta,i_disp,i0,c,days.diff,
out) |>
lm(formula = out ~ .) |> stargazer::stargazer(type="text")
# average infections in county during study period
load("./jags models/submission/save/submission.RData")
data |> group_by(date) |> filter(date>as.Date("2020-03-12"),
date<as.Date("2020-05-01")) |>
summarise(mpos=sum(pos.new)*4/111) |> pull() |> summary()
# -> 20 to 60
# days difference * locations is between 100 and 2000
# minimal value of days * locations * infections is 100*20, maximum is 2000*60
data |> group_by(date) |> filter(date>as.Date("2020-03-12"),
date<as.Date("2020-05-01")) |>
summarise(mpos=sum(pos.new)/111) |> pull() |> summary()
# -> 5 to 15
# reporting rate 25% --> 20 to 60
# days difference * locations is between 100 and 2000
# minimal value of days * locations * infections is 100*20, maximum is 2000*60
# --> 2000 to 120 000
# plots -------------------------------------------------------------------
# infection-days power
df |>
rename(dispersion = i_disp,
effect = true.beta) |>
group_by(c,days.diff,i0,effect,dispersion) |>
summarise(out = mean(qhigh<0 | qlow>0)) |>
mutate(infectiondays = c*days.diff*i0) |>
ggplot()+
geom_hline(yintercept = c(0,1))+
geom_rect(data = data.frame(xmin=20*100,xmax=60*2000,ymin=-1,ymax=2),
aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax),alpha=.2)+
geom_point(aes(infectiondays,out,shape=factor(days.diff),size=factor(c),col=factor(i0)),
alpha=.5)+
scale_color_discrete(name="daily infections")+
scale_size_discrete(name="locations")+
scale_shape_discrete(name="days")+
facet_grid(effect~dispersion,labeller = label_both)+
xlab("infections")+
ylab("rejection rate")+
theme_bw()+
scale_x_log10()+
coord_cartesian(ylim=c(0,1))
ggsave("./analysis/tex/plotsnew/sim_diff_power.pdf",width = 10,height = 5)
ggsave("./analysis/tex/plotsnew/sim_diff_power.tif",width = 10,height = 5, dpi = 800, device="tiff")
# infection-days mae
df |>
rename(dispersion = i_disp,
effect = true.beta) |>
group_by(c,days.diff,i0,effect,dispersion) |>
summarise(out = mean(abs(mean-effect))) |>
mutate(infectiondays = c*days.diff*i0) |>
ggplot()+
geom_hline(yintercept = 0)+
geom_rect(data = data.frame(xmin=20*100,xmax=60*2000,ymin=-1,ymax=2),
aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax),alpha=.2)+
geom_point(aes(infectiondays,out,shape=factor(days.diff),size=factor(c),col=factor(i0)),
alpha=.5)+
scale_color_discrete(name="daily infections")+
scale_size_discrete(name="locations")+
scale_shape_discrete(name="days")+
facet_grid(effect~dispersion, labeller = label_both)+
xlab("infections")+
ylab("mean absolute error")+
theme_bw()+
scale_x_log10()+
coord_cartesian(ylim=c(0,.3))
ggsave("./analysis/tex/plotsnew/sim_diff_mae.pdf",width = 10,height = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.